
	
	
	
	
	
	
	
	
	
	
	
	
	

MooseFS Hardware Guide
v.0.9.1

Best practices for choosing appropriate hardware components
for a MooseFS storage cluster.

	
	 	

MooseFS Hardware Guide 2

	
	

Table of contents
PREFACE	 3	

MOOSEFS	ARCHITECTURE	 4	

OPERATING	SYSTEMS	REQUIREMENTS	 5	

MASTER	SERVERS	(LEADER,	FOLLOWERS)	AND	METALOGGERS	REQUIREMENTS	 6	

CHUNKSERVERS	REQUIREMENTS	 8	

NETWORKING	REQUIREMENTS	 10	

CLUSTER	CONFIGURATIONS	 11	

TIPS	&	TRICKS	 13	

MooseFS Hardware Guide 3

 Preface

The purpose
Due	to	the	fact,	that	MooseFS	storage	cluster	may	serve	many	purposes,	and	the	components	used	for	

its	construction	(servers,	hard	disks,	memory	cards,	processors,	network	etc.)	have	a	variety	of	
independent	parameters	such	as	latency,	frequency	or	capacity,	there	is	no	possibility	to	point	out	specific	
configurations	that	would	suit	the	needs	of	every	client.	Also,	while	configuring	a	cluster	you	need	to	
consider	the	purpose	it	needs	to	serve.	One	should	carefully	choose	the	parameters	of	each	component	
according	to	the	purpose	of	a	cluster.	Some	selections	may	be	determined	by	available	resources	such	as	
network	type	and	capacity	or	the	servers	which	are	already	on	site.	We	aim	to	inform	you	thoroughly	on	
how	to	utilize	storage	in	the	most	efficient	manner.	

State of the art
This	document	provides	guidelines	for	selecting	appropriate	equipment	for	building	storage	using	

MooseFS	distributed	file	system.	We	are	making	every	effort	to	ensure	that	the	guidelines	included	here	
refer	to	the	current	hardware	configurations	(servers,	disks,	etc.)	available	in	the	market.	Nevertheless,	
we	are	aware	of	the	continuous	progress	of	technology	and	since	we	cannot	ensure	that	the	document	will	
refer	to	the	latest	models	everywhere,	we	have	presented	universal	information	which	will	enable	you	to	
select	from	the	available	hardware	solutions.	

No requirements, just tips
MooseFS	has	some	basic	requirements	mainly	for	operating	systems	on	which	it	can	be	ran	but	there	

are	no	special/minimum	hardware	requirements.	It	can	run	on	embedded	computers,	servers	of	older	
generations	and	the	latest	machines.	Also,	it	can	use	traditional	hard	drives	as	well	as	SSD	disks.	It	can	use	
various	types	of	physical	networks	at	different	speeds,	e.g.	Ethernet	from	100	Mbps	to	200	Gbps	or	
InfiniBand.	Therefore,	the	document	does	not	provide	the	minimum	hardware	requirements.	In	addition	
to	clearly	described	cases,	we	refer	to	standard	components	which	are	easily	available	in	the	market.	For	
more	information,	please	visit	our	website.	

Component dependencies
When	preparing	a	specific	hardware	configuration,	it	is	necessary	to	take	into	account	the	mutual	

dependencies	between	individual	components	in	the	cluster.	The	idea	is	to	select	components	and	
parameters	so	that	another	part	of	the	system	does	not	limit	their	use.	The	purposefulness	of	using	a	
specific	component	in	relation	to	the	purpose	of	using	the	entire	cluster	is	also	important.		

	
	
	

MooseFS Hardware Guide 4

MooseFS Architecture

	
Fig.	1.	A	basic	MooseFS	architecture	diagram	

	
		
A	MooseFS	cluster	consists	of	components	of	four	types:	Master	Servers,	Chunkservers,	Metaloggers	

(metadata	backup	servers)	and	client	machines.		
	

1.	Managing	servers	(Leader	Master	Server,	Master	Server	Followers)	–	machines	managing	the	whole	file	
system,	storing	metadata	for	every	file	and	folder.	Leader	Master	Server	is	always	the	central	point	of	
a	cluster.	Leader	Master	Server	directs	clients	to	appropriate	data	servers	(Chunkservers)	for	
read/write	operations.	It	leads	all	inter-servers	data	manipulations	(replicating,	auto-healing,	
balancing	etc.).	Master	Server	neither	reads	nor	sends	any	file	data	(chunks).	Each	client	and	data	
server	must	know	the	IP/DNS	address	of	the	Master	Server.	Clients	learn	from	the	Master	Server	
addresses	of	Chunkservers	(data	servers)	for	sending	or	receiving	chunks	of	data.	Master	Server	
Followers	are	Highly	Available	online	backup	copies	of	Leader	Master	Server	(available	with	HA	
configurations).	

2.	Data	servers	(Chunkservers)	–	These	are	machines	that	store	files’	data	(chunks).	They	serve	data	for	
clients	and	synchronize	among	themselves	when	necessary.		

3.	Metadata	backup	server(s)	(Metaloggers)	–	There	can	be	any	number	of	such	servers,	all	of	which	store	
metadata	changelogs	and	periodically	download	the	main	metadata	file.	In	MooseFS	Community,	any	
Metalogger	can	be	easily	set	up	as	a	new	Master	Server	in	case	of	main	Master	Server	failure.	

4.	Client	computers	that	use	(mount)	the	filesystem	–	There	can	be	any	number	of	such	machines	
contacting	Master	Servers	(to	receive	and	modify	file	metadata)	and	Chunkservers	(to	exchange	
actual	file	data)	using	the	MooseFS	TCP/IP	network	protocol.	Linux/FreeBSD/OS	X	machines	use	the	
mfsmount	process	based	on	the	FUSE	mechanism	(Filesystem	in	USErspace)	so	that	MooseFS	is	
available	on	every	operating	system	supported	by	FUSE.	Also,	Windows	machines	(both	desktops	
and	servers)	use	the	native	Windows	mfs4win	driver.	

All	components	communicate	to	each	other	using	the	MooseFS	TCP/IP	based	protocol.	The	most	
common	network	type	used	for	MooseFS	clusters	is	Ethernet	but	other	types	supporting	TCP/IP	stack	
may	be	used.	

MooseFS Hardware Guide 5

Operating systems requirements
This	document	is	all	about	hardware	requirements	but	a	few	words	on	OS	requirements	may	also	

assist	in	making	right	decisions	on	hardware.	
It’s	always	recommended	to	use	up-to-date	operating	system	as	it	helps	in	maintaining	security,	

stability	and	compatibility.	For	example,	some	MooseFS	3.0+	features	will	not	work	with	old	FUSE	
versions.	Please	refer	to	MooseFS	website	for	an	up	to	date	list	of	supported	operating	systems.	

Servers
The	MooseFS	server	side	(Master	Servers,	Chunkservers)	may	be	used	on	virtually	any	modern	POSIX-

compliant	operating	system.	This	is	the	list	of	platforms	with	officially	supported	repositories:	
• Ubuntu	12/14/16/18,	
• Debian	6/7/8/9,	
• RHEL/CentOS	6/7,	
• FreeBSD	9.3/10/11,	
• MacOS	X	10.9+,	
• Raspberry	Pi	3.	
In	case	binary	files	are	unavailable	for	some	platforms,	one	can	compile	MooseFS	from	the	source	code.	

Clients
The	client	side	for	Linux/FreeBSD	family	of	systems	requires	FUSE.	MS	Windows	client	driver	supports	

Windows	Server	from	2008	R2	SP1	and	MS	Windows	from	7	SP1.	

MooseFS Hardware Guide 6

Master Servers (Leader, Followers) and Metaloggers requirements
The	Leader	Master	Server	is	the	central	point	of	a	cluster.	It	is	responsible	for	storing	metadata	of	the	

file	system	(file	names,	attributes,	folders	structure	etc.)	in	the	in-memory	database.	Any	change	in	
metadata	is	immediately	logged	to	its	local	disk	(changelog).	There	is	one	Master	Server	but	there	may	be	
many	so-called	Metaloggers.	The	Metalogger	server	just	logs	all	metadata	changes	to	its	local	disk	and	may	
be	turned	into	Master	Server	manually.		

As	the	Metalogger	simply	gathers	asynchronous	online	metadata	backups	from	Leader	Master	Server	–	
the	hardware	requirements	are	not	higher	than	that	for	the	Master	Server	itself	as	it	needs	about	the	same	
disk	space.	The	Metalogger	should	have	at	least	the	same	amount	of	disk	space	(especially	the	free	space	
in	/var/lib/mfs)	as	the	main	Master	Server.	If	one	would	like	to	use	the	Metalogger	as	the	Master	
Server	in	case	of	the	main	Master’s	failure,	the	Metalogger	machine	should	have	at	least	the	same	amount	
of	RAM	as	the	main	Master	Server	and	CPU	operating	at	the	same	(or	at	least	similar)	frequency.	

Whereas	for	the	High	Availability	configuration,	there	is	one	Master	Server	but	there	may	be	many	so-
called	Follower	Master	Servers	(or	Followers).	A	follower	is	an	asynchronous,	online	“backup”	Master	
Server	that	follows	all	metadata	changes,	keeps	its	own	copy	of	the	in-memory	database	and	may	be	
elected	as	a	new	Leader	Master	Server	by	majority	of	Chunkservers	in	case	Leader	Master	Server	is	down.	
Hardware	requirements	for	Leader	Master	Servers	and	Follower	Master	Servers	are	the	same.	

The	Master	Server	may	save	the	entire	metadata	database	to	local	disk	every	hour	(no	HA	edition)	or	
once	a	day	(HA	edition),	however	Follower	saves	its	database	every	hour.

It	is	always	recommended	to	use	either	Follower	Master	Servers	(see	HA	configuration)	or	
Metaloggers	to	backup	Leader	Master	Server’s	metadata.	Losing	a	file	system’s	metadata	information	
usually	leads	to	losing	data	in	a	cluster.	Although	possible,	it	is	extremely	difficult	to	recover	files	from	
chunks	without	metadata	information.	So,	here	one	can	use	both	Follower	Master	Servers	and	
Metaloggers	but	usually	it	is	unreasonable	as	Follower	Master	Server	covers	Metalogger	tasks	and	much	
more.	

Memory
There	should	be	sufficient	memory	in	the	Leader	Master	Server	(Master	Server	Followers,	

Metaloggers)	as	it	needs	to	store	all	metadata	in	the	in-memory	database.	Each	file	or	folder	(inode)	
metadata	takes	about	300-350	bytes.	The	size	of	the	metadata	database	neither	depends	on	the	cluster	
capacity	nor	on	files	sizes,	rather	it	is	proportional	to	the	number	of	files.	Therefore,	for	best	results	one	
should	estimate	the	maximum	number	of	files	and	folders	in	a	cluster	and	adjust	the	Master	Server	
memory	accordingly.		

For	example,	150	million	of	files/folders	requires	approx.	42	GiB	of	RAM	for	storing	metadata	plus	
Master	Server	operating	system	overhead.		

CPU
Since	Master	Server	is	a	single-threaded	process,	we	would	recommend	to	use	modern	processors	

with	high	clock	and	low	number	of	cores,	e.g.:	
• Intel®	Xeon®	Gold	5122,	3.70	GHz,	
• Intel®	Xeon®	Platinum	8156,	3.70	GHz.	

A	good	starting	point	to	help	in	the	selection	of	CPU	for	Master	Server	would	be	the	single-thread	
performance	rating	published	by	CPU	Benchmark:	www.cpubenchmark.net/singleThread.html	

It’s	recommended	to	disable	the	hyper-threading	CPU	feature	for	Master	Servers.	Additionally,	
disabling	CPU	power	management	in	BIOS	(or	enable	mode	like	“maximum	performance”)	may	have	
positive	impact	on	efficiency.	

Disks
Master	Server	logs	each	operation	to	its	local	disk	but	occasionally	it	also	dumps	the	whole	metadata	

database	to	its	local	disk.	It	is	recommended	to	have	redundant	local	storage	(e.g.	RAID	1	or	RAID	1+0)	in	
the	Leader	and	Follower	Master	Servers.	

The	size	of	incremental	logs	depends	on	the	number	of	operations	per	hour.	Length	(in	hours)	of	this	
incremental	log	is	configurable. For	example,	the	space	of	20	GiB	should	be	enough	for	storing	information	
for	25	million	files	and	for	changelogs	to	be	kept	for	up	to	50	hours.	One	can	calculate	the	minimum	
amount	of	recommended	disk	space	using	the	following	formula:		

DISK_SPACE = RAM *(BACK_META_KEEP_PREVIOUS+2) + (BACK_LOGS+1)[GiB]	
where:	
•	RAM	–	amount	of	RAM	used	by	Master	Server	process	[GiB],		

MooseFS Hardware Guide 7

•	BACK_LOGS	–	number	of	metadata	change	log	files,	default	is	50	(from	
/etc/mfs/mfsmaster.cfg),		

•	BACK_META_KEEP_PREVIOUS	–	number	of	older	metadata	files	to	be	kept	(default	is	1)	(also	from	
/etc/mfs/mfsmaster.cfg).		

If	default	values	from	/etc/mfs/mfsmaster.cfg	are	used,	it	is	RAM*3+51.	For	128	GiB	of	RAM	
used	by	Master	Server	process,	one	should	reserve	for	/var/lib/mfs:	128*3	+	51	=	435	GiB	minimum	
disk	space.	

For	configurations	where	Master	Servers	share	the	same	machine	with	Chunkservers	it	is	important	to	
ensure	the	Master	Server	has	dedicated	access	to	its	local	disk.	Otherwise	it	is	possible	that	Chunkserver’s	
heavy	I/O	disk	operations	slows	down	Master	Server	disk	operations	further	causing	Master	Server	
slowdowns	and	finally	leading	to	the	slowdown	of	the	entire	storage	cluster.		

Networking
Master	Server	neither	sends	nor	receives	actual	file	data,	it	just	deals	with	metadata	which	is	usually	

much	smaller	in	amount	than	actual	file	data.	As	it	is	at	the	central	point	of	the	cluster,	each	client	and	
each	Chunkserver	exchanges	data	with	the	same	Master	Server.	Even	for	clusters	with	HA	configurations	
there	is	always	just	one	Leader	Master	Server.	This	leads	to	a	significant	number	of	small	network	I/O	
operations.	Please	note,	neither	Chunkservers	nor	clients	connect	to	Followers	and	Metaloggers.	

Master	Server	may	use	two	separate	network	interfaces:	the	first	one	for	serving	clients	and	the	
second	one	for	communicating	with	other	servers	(which	is	not	LACP).	

MooseFS Hardware Guide 8

Chunkservers requirements
The	Chunkserver’s	main	duty	is	to	transfer	data:	read	from	disk	&	send	to	network	and	receive	from	

network	&	write	to	disk.	It	doesn’t	perform	a	lot	of	calculations	or	memory	operations.	For	EC	
configurations,	Chunkservers	are	also	responsible	for	calculating	erasure	codes.	However,	the	parity	
calculation	algorithm	is	extremely	fast	(up	to	5GB/s	with	average	hardware)	and	should	not	affect	
Chunkserver	resources.	

Chunkservers	store	data	in	the	form	of	“chunks”,	on	local	disks.	Each	chunk	is	a	file	ranging	from	
64	kiB	to	64	MiB	plus	8	kiB	chunk	header.	Files	longer	than	64	MiB	are	divided	into	many	chunks	and	
spread	across	many	Chunkservers.	This	is	why	files	smaller	than	64	kiB	occupy	minimum	64+8=72	kiB	of	
disk	space.	

A	new	data	server	can	be	connected	to	the	system	at	any	point	in	time	and	the	new	capacity	is	used	
immediately.		

Memory
During	normal	operations	the	Chunkserver	keeps	information	about	its	chunks	in	memory.	Each	chunk	

takes	approximately	150-200	bytes.	Additionally,	approximately	350	MiB	(Virtual)	/	200	MiB	(Resident)	
of	memory	should	be	available	for	the	processes.		

The	required	memory	size	depends	on	a	desired	maximum	number	of	chunks	on	a	server.	The	
maximum	number	of	chunks	on	a	server	(in	terms	of	how	many	chunks	the	server	disks	may	store)	may	
be	calculated	roughly	from	the	Chunkserver’s	total	available	(for	MooseFS)	disk	space	divided	by	average	
chunk	size.	Average	chunk	size	depends	on	the	average	size	of	files.	When	storing	files	much	larger	than	
64	MiB	it	should	be	about	64	MiB	and	for	smaller	files,	average	chunk	size	will	be	between	72	kiB	and	
64	MiB.	

Example	for	memory	requirement	calculation:	
• Chunkserver	has	20	*	6TiB	disks	available	for	storing	data,	
• Users	store	files	of	approx.	size	~100MiB	each,		
• It	makes	~50MiB	average	chunk	size	(avg.	each	file	is	kept	in	2	chunks)	
• Memory	required:	(20*6TiB	/	50MiB)	*	170B	+	~350MiB	=		

~408MiB	+	350MiB	=	~758MiB	
The	Chunkserver	may	use	the	remaining	available	memory	for	caching	data	as	it	boosts	its	

performance.	From	our	experience	a	typical	memory	size	for	the	Chunkserver	is	8-12GiB.	

CPU
Since	Chunkserver	daemon	is	a	multi-threaded	process,	it	is	recommended	to	use	multi-core	

processors.	Chunkserver	would	usually	utilize	equivalent	of	~1	core	of	the	CPU	for	cluster	related	
operations.		

Utilization	of	CPU	may	increase	due	to	erasure	codes	calculations	(for	EC	cluster	configurations).	
However,	the	utilization	increase	factor	depends	on	the	EC	configuration,	mainly	on	the	amount	of	data	
written	with	erasure	codes.	EC	calculations	are	not	performed	during	normal	read	operations	but	is	
calculated	only	during	write	operations	and	while	repairing	corrupted	chunks.	

Disks
It	is	recommended	to	connect	disks	as	JBODs	and	each	disk	should	be	formatted	with	POSIX	compliant	

file	system	and	mounted	separately	to	the	operating	system	(e.g.	as	/mnt/chunk01,	/mnt/chunk02,	...).	
The	file	system	recommended	for	local	disks	is	XFS.	

Moreover,	it	is	not	recommended	to	use	RAID	controllers	in	the	Chunkservers	as	it	is	MooseFS’s	role	to	
keep	data	redundant	and	safe.	There	are	at	least	two	reasons	for	not	using	underlying	RAID	controllers:	

• MooseFS	has	a	mechanism	of	checking	if	the	hard	disk	is	in	a	good	condition	or	not.	MooseFS	can	
discover	broken	disks,	replicate	data	and	mark	such	disks	as	damaged.	The	situation	is	different	
with	RAID:	MooseFS	algorithms	do	not	support	RAIDs	state	checking,	therefore	corrupted	RAID	
arrays	may	be	falsely	reported	as	healthy.	

• The	other	aspect	is	the	time	of	replication.	Let's	assume	there	is	a	replication	goal	set	to	2	for	the	
whole	MooseFS	instance.	If	one	2	TiB	drive	breaks,	the	replication	(from	another	copy)	will	take	
about	20-60	minutes.	However,	if	one	big	RAID	(e.g.	36	TiB)	becomes	corrupted,	replication	can	
take	even	12-18	hours.	So,	until	the	replication	process	is	finished,	some	of	data	is	in	danger,	
because	there	is	only	one	valid	copy	and	if	another	disk	or	RAID	fails	during	that	time,	some	of	
data	may	be	irrevocably	lost.	Thus,	the	longer	replication	period	puts	data	in	greater	danger.	

MooseFS Hardware Guide 9

How many disks per Chunkserver?
Theoretically,	there	is	no	limit	on	the	number	of	disks	in	a	Chunkserver	apart	from	hardware	limits:	

chassis	size,	cooling	or	disk	controller	limits.	Appropriate	number	of	disks	in	a	chunk	server	should	be	
determined	taking	into	consideration	the	way	storage	is	to	be	used	and	the	hardware	parameters.	For	
better	overall	cluster	performance,	it	is	recommended	to	have	more	Chunkservers	with	smaller	number	of	
disks:		

• as	each	Chunkserver	has	its	limitations	for	serving	client	I/O	requests	-	more	Chunkservers	may	
serve	more	requests	for	many	clients	in	parallel,	

• usually	either	a	network	bandwidth	limit	or	a	controller	bandwidth	limit	is	reached	when	there	
are	too	many	(e.g.	fast	SSD)	disks	in	one	server,	

One	may	consider	putting	more	disks	in	a	Chunkserver	when	either	a	cluster	has	to	keep	“colder”	data	
(more	files	but	used	infrequently)	or	when	just	a	few	clients	are	using	the	cluster.	If	just	a	few	(or	just	one)	
clients	are	accessing	the	cluster,	an	increase	in	the	number	of	Chunkservers	will	not	increase	the	speed	
beyond	a	certain	level	as	it	is	limited	by	the	client’s	network	bandwidth	and	its	machine	performance.	

There	are	other	factors	also	regarding	Chunkservers/disks	ratio	which	should	be	taken	into	account.	
For	example,	Erasure	Coding	requires	at	least	8+2n	Chunkservers	in	a	cluster	so	for	desired	cluster	size	
the	minimum	number	of	disks	per	Chunkserver	will	be:	cluster_size	/	((8+2n)	*	disk_size).	

SSDs vs. HDDs
SSD	disks	are	getting	more	and	more	attention	these	days	as	they	are	faster	(both	latency	and	

throughput)	than	spinning	drives	and	they	are	getting	cheaper	each	year.	There	is	a	trend	for	filling	up	
storage	clusters	with	SSD	drives.	This	is	possible	with	MooseFS,	where	one	may	build	SSD-only	cluster	or	
mix	SSDs	with	HDDs	thereby	building	a	kind	of	tiered	storage	solution.		

Building	such	a	mixed	solution	is	easy	with	so-called	storage	classes	of	MooseFS.	If	there	are	
Chunkservers	containing	disks	of	a	single	type,	appropriate	storage	classes	may	be	used	for	grouping	
Chunkservers	and	assigning	policies	for	storing	data	on	certain	groups.	Such	as	files	not	used	for	a	long	
period	may	be	automatically	moved	from	SSD-	to	HDD-only	Chunkservers.	It	is	expected	that	SSD-only	
Chunkservers	may	be	faster	but	more	expensive	and	HDD-only	Chunkservers	may	be	slower	but	cheaper.	

It	is	important	to	note	that	too	many	SSD	disks	in	a	single	server	may	not	speed	up	Chunkservers	as	
expected.	This	is	because	of	the	constraint	of	either	a	disk	controller	bandwidth	limit	or	a	network	
bandwidth	limit.	Utilizing	the	full	transfer	speed	of	SSD	drives	is	possible	when	the	controller	and	network	
speed	is	greater	than	the	transfer	speed	of	a	disk	multiplied	by	the	number	of	disks.	One	should	also	refer	
to	the	controller	specification	to	check	its	limits	on	operating	many	disks	at	once.	

Mixing	SSDs	and	HDDs	for	the	same	Chunkserver	process	is	not	recommended.	Chunkserver	doesn’t	
differentiate	SSDs	from	HDDs.	Neither	storage	classes	don’t	support	singe	disk	assignment	nor	
Chunkserver	algorithms	use	particular	SSD	disks	for	data	caching.	If	–	for	any	reason	–	there	have	to	be	
both	disk	types	in	one	Chunkserver	it’s	possible	to	run	separate	Chunkserver	processes	on	the	same	
machine.	Each	process	should	have	assigned	a	separate	set	of	disks:	SSDs	and	HDDs	respectively.	Thus,	
each	process	is	available	for	a	cluster	as	separate	Chunkserver	and	storage	classes	may	be	applied.		

Due	to	its	low	latency	SSD	disks	may	boost	a	cluster	when	many	random	I/O	operations	are	expected	
e.g.	storing	SQL	database	files,	home	directories,	web	assets	etc.	

Pre-fetch & read-ahead
MooseFS’s	read-ahead	and	pre-fetch	algorithms	make	HDD-only	Chunkservers	very	effective.	They	

pre-fetch	a	single	chunk	data	when	a	request	regarding	a	chunk	appears.	It	makes	data	required	by	a	
client	available	in	Chunkserver’s	memory	prior	to	the	I/O	operation	requesting	it.	MooseFS	client	may	
even	read	in	advance	following	chunks	-	when	data	stream	is	read	sequentially.	These	algorithms	alleviate	
the	problem	of	a	slower	random	data	access	and	slower	data	transfer	for	HDD	disks.	Data	caching	and	
read-ahead/pre-fetch	algorithms	only	use	RAM	for	storing	cached	data.	Once	again,	these	algorithms	do	
not	use	SSDs.	

Pre-fetch	and	read-ahead	algorithms	enhances	the	HDD	disks	clusters	performance	especially,	for	
stream-like	cluster	access	patterns	e.g.	storing	and	serving	video	files,	logging	etc.	

Networking
Chunkserver	sends	and	receives	a	lot	of	data.	Its	networking	interface	is	essential	for	robust	

operations.	Always	keep	in	mind	that	at	any	given	point	in	time,	each	Chunkserver	serves	many	clients	
simultaneously	and	each	client	connects	to	many	Chunkservers	even	when	dealing	with	one	(large	
enough)	file.	In	addition,	each	Chunkserver	sends	and	receives	data	from	other	Chunkservers	thereby	
balancing	operations	and	auto	repairs.	

Chunkserver	may	use	two	separated	network	interfaces:	the	first	one	for	serving	clients	and	the	
second	one	for	server	to	server	communication	(which	is	not	LACP).		

MooseFS Hardware Guide 10

Networking requirements
MooseFS	requires	TCP/IP	stack	as	a	networking	protocol	and	the	underlying	network	is	not	important.	

MooseFS	has	been	successfully	tested	using	Ethernet	and	InfiniBand	(IP-over-IB).	

Ethernet
It	is	recommended	to	set	up	jumbo-frames	(MTU=9000).		
With	larger	number	of	Chunkservers,	network	switches	should	be	connected	either	through	an	optical	

fiber	or	use	aggregated	links.	
It	is	recommended	to	use	at	least	1	Gbps	networks	although	MooseFS	performs	better	with	faster	

networks.	Configurations	with	many	clients	and	Chunkservers	(even	when	speed	of	disks	are	not	taken	
into	consideration)	may	easily	saturate	10	Gbps	and	faster	networks	as	the	communication	is	performed	
on	many-to-many	mode.	For	instance,	even	8	Chunkservers	of	moderate	performance	are	able	to	saturate	
a	client’s	endpoint	40	Gbps	network.	

LACP
To	enable	redundancy	of	the	network	connections	(no-SPoF)	it	is	recommended	to	use	two	switches,	

setting	LACP	between	them	and	connecting	each	machine	to	both	of	them.	

MooseFS Hardware Guide 11

Cluster configurations
There	are	a	few	typical	cluster	configurations	described	below.	

High Availability and No Single Point of Failure
Each	edition	of	MooseFS	keeps	data	safe	as	data	is	spread	across	many	Chunkservers	and	it	is	kept	

redundant.	However,	there	is	also	a	higher	level	of	cluster	data	availability	which	allows	uninterrupted	
access	of	data.	High	Availability	means	that	data	is	not	just	safe	but	also	easily	accessible	by	the	storage	
clients.	

	
To	achieve	HA	configuration	user	has	to:	
1. install	at	least	3	Chunkservers	(if	not	using	erasure	codes)	or	at	least	10	Chunkservers	(if	using	

Erasure	Codes),	
2. install	the	Leader	Master	Server	and	at	least	1	Follower	Master	Server,	
3. set	up	replication	goal	greater	than	1	for	all	data	in	a	cluster	or	EC	with	at	least	1	parity	sum	(EC	

“@1”),	
4. install	the	HA-aware	(client	side)	mfsmount	daemon,	
5. set	up	LACP	or	other	means	for	network	HA.	
	
Minimal	number	of	3	Chunkservers	are	required	due	to	the	automated	Leader	Master	Server	election	

mechanism.	The	election	process	is	designed	in	such	a	way	that	it	prevents	a	possible	cluster	split-brain	
scenario.	As	the	minimal	odd	number	greater	than	2	(required	for	redundancy)	is	3	–	so	this	is	the	
minimal	number	of	Chunkservers	required.	

Another	reason	for	using	at	least	3	Chunkservers	is	to	keep	replication	goal	at	safe	level	(at	least	2)	
even	in	case	of	failure	of	one	Chunkserver.	With	3	Chunkservers,	when	one	of	them	goes	down,	data	is	still	
accessible	and	it	may	be	replicated	to	the	2nd	available	Chunkserver.	In	case	when	only	1	Chunkserver	is	
available,	MooseFS	cluster	waits	for	another	one	(in	order	to	elect	a	new	Leader	Master	Server)	and	is	not	
able	to	perform	any	operations:	data	may	be	safe	but	is	inaccessible.	

One	may	use	Erasure	Coding	with	HA	configuration.	Such	a	case	requires	more	Chunkservers	as	each	
chunk	is	divided	into	many	“parts”.	Please	refer	to	Erasure	Coding	configuration	described	below.	

Installing	Metaloggers	for	HA	configuration	is	not	necessary	as	Follower	Master	Servers	take	care	of	
metadata	backups.	User	may	install	more	than	one	Follower	Master	Server	to	get	higher	degree	of	cluster	
availability.		

The	HA-aware	(client	side)	mfsmount	daemon	assures	constant	file	system	access	for	client	
applications	–	even	during	automatic	Leader	Master	Server	election.	It	is	important	to	notice	that	with	HA	
configuration	all	pending	client-side	I/O	operations	are	not	interrupted,	they	may	be	just	sustained	for	a	
short	period	of	time	(usually	less	than	a	few	second).		

Using	external	gateways	(SMB,	NFS,	etc.)	in	front	of	MooseFS	HA	cluster	requires	configuring	HA	for	
these	gateways	independently.	However,	it	may	not	be	possible	due	to	protocol	or	implementation	
limitations.	MooseFS	protocol	supports	HA	for	all	client-cluster	communication.	
	

LACP	should	be	used	for	network	redundancy	(as	mentioned	above)	otherwise	network	becomes	a	
single	point	of	failure.	

	
HA	configurations	are	available	for	MooseFS	3.x	Pro	and	MooseFS	4.x	versions.	It	is	unavailable	for	

MooseFS	1.x,	2.x	and	3.x	Community	Edition.	

Cluster with Erasure Coding
Erasure	Coding	is	another	way	of	ensuring	data	redundancy	in	a	cluster.	Instead	of	keeping	several	

copies	of	each	file,	which	is	disk	space	inefficient,	each	chunk	of	data	is	divided	into	parts.	There	are	
special,	additional	parts	called	“parity	stripes”	or	“erasure	codes”	which	are	calculated	with	a	special	
algorithm	from	original	data.	The	extra	parity	stripes	allow	cluster	to	recover	missing	parts	of	original	
data	when	necessary.	

One	may	define	up	to	9	parity	stripes	to	be	calculated	for	each	8	stripes	of	original	data.	It	is	8+n	type	
of	erasure	coding	algorithm.	All	stripes	(both	original	and	parity)	are	always	of	the	same	size.	

A	minimal	number	of	Chunkservers	for	EC	configuration	is	8+2n,	where	n	is	a	desired	number	of	parity	
stripes	to	be	calculated	by	a	cluster.	

It	should	be	remembered	that	in	configurations	where	erasure	coding	is	used,	parity	sums	are	always	
calculated	by	Chunkservers.	Data	written	by	cluster	users’	is	always	kept	in	several	copies	in	the	first	step	

MooseFS Hardware Guide 12

which	is	an	ordinary,	non-EC	mechanism	of	keeping	data	redundant.		It	is	an	independent	(from	client	
write	operations)	process	to	calculate	erasure	codes.	Once	parity	codes	are	calculated	keeping	copies	is	no	
longer	necessary,	obsolete	copies	are	deleted.	

Therefore,	there	may	be	an	increased	demand	for	CPU	power	-	during	the	calculation	of	parity	codes	
(writing)	and	during	data	recovery	(restoration	of	damaged	data).	MooseFS’s	erasure	code	calculation	
algorithm	is	very	efficient	with	throughput	of	up	to	5	GiBps	per	Chunkserver	thanks	to	the	
implementation	with	XOR	operations	on	large	blocks	of	memory.	

Virtualization

MooseFS cluster on virtual machines
It’s	not	recommended	(although	possible)	to	run	the	Leader	Master	Server	as	a	virtual	machine.	Virtual	

machines	are	known	for	their	periodic	slowdowns	and	lags	and	they	may	slow	down	the	entire	storage	
cluster.	

It’s	also	not	recommended	to	run	Chunkservers	as	virtual	machines.	The	reason	here	is	that	virtual	
machines	usually	don’t	have	access	to	physical	disks	which	slows	down	data	transfer.	

Additionally,	virtualization	adds	an	extra	layer	(host	operating	system)	which	slows	down	most	I/O	
and	memory	operations	and	adds	extra	latency	overhead	on	network	operations.	

MooseFS cluster in a container (LXC)
Although	LXC	containers	are	considered	to	be	more	efficient	than	virtual	machines	the	above	

arguments	also	apply	to	containers.	It	may	be	useful	however	to	use	containers	or	VMs	for	testing	or	
evaluating.	There	are	Docker	setup	scripts	available.	

MooseFS Hardware Guide 13

Tips & Tricks
There	are	some	tips	&	tricks	for	configuring	MooseFS	storage	cluster	BELOW.	

Disable updateDB feature (Linux only)
UpdateDB	is	a	part	of	mlocate which	is	simply	an	indexing	system,	that	keeps	a	database	listing	all	

the	files	on	your	server.	This	database	is	used	by	the	locate command	to	do	searches.	UpdateDB	is	not	
recommended	for	network	distributed	filesystems.

To	disable	updateDB	feature	for	MooseFS,	add	fuse.mfs	to	the	PRUNEFS	variable	in	
the/etc/updatedb.conf (it	should	look	similar	to	this):		

PRUNEFS="NFS	nfs	nfs4	rpc_pipefs	afs	binfmt_misc	proc	smbfs	autofs	iso9660	ncpfs	coda	devpts	ftpfs	
devfs	mfs	shfs	sysfs	cifs	lustre	tmpfs	usbfs	udf	fuse.mfs	curlftpfs	ecryptfs	fusesmb	devtmpfs"	

Master Server overcommit_memory (Linux only)
If	you	have	an	entry	similar	to	the	following	one	in	/var/log/syslog	or	/var/log/messages:	
fork error (store data in foreground - it will block master for a while)	
This	would	indicate	that	you	are	encountering	problems	with	your	Master	Server,	such	as	timeouts	

and	dropped	connections	from	clients.	This	happens,	because	your	system	does	not	allow	Master	process	
to	fork	and	store	its	metadata	information	in	the	background.	

Linux	systems	use	several	different	algorithms	for	estimating	how	much	memory	every	single	process	
needs	when	it	is	created.	One	of	these	algorithms	assumes	that	if	we	fork	a	process,	it	will	need	exactly	the	
same	amount	of	memory	as	its	parent.	As	this	algorithm	process	consumes	24	GiB	of	memory	and	a	total	
amount	of	40	GiB	(32	GiB	physical	plus	8	GiB	virtual)	,	the	forking	would	always	be	unsuccessful.	

Although	in	reality,	the	fork	command	does	not	copy	the	entire	memory,	only	the	modified	fragments	
are	copied	as	needed.	So	since	the	child	process	in	MooseFS	master	only	reads	this	memory	and	dumps	it	
into	a	file,	it	is	safe	to	assume	that	not	much	of	the	memory	content	will	change.	

Therefore	such	"careful"	estimating	algorithm	is	not	needed.	The	solution	is	to	switch	the	estimating	
algorithm	the	system	uses.	This	can	be	done	one-time	by	a	root	command:	

echo 1 > /proc/sys/vm/overcommit_memory
In	order	to	switch	the	algorithm	permanently,	so	that	it	remains	the	same	even	after	the	system	has	

restarted,	you	need	to	put	the	following	line	into	your	/etc/sysctl.conf file:	
vm.overcommit_memory=1

